
Ketje and Keyak

Guido Bertoni1 Joan Daemen1

Michaël Peeters2 Gilles Van Assche1 Ronny Van Keer1

1STMicroelectronics

2NXP Semiconductors

DIAC 2014

1 / 19

Overview

Outline

1 Overview

2 Keyak

3 Ketje

4 Conclusions and Current Developments

2 / 19

Overview

Overview

Inspired by Keccak and Duplex
Keyak targeting high performances

Using reduced-round Keccak-f[1600] or Keccak-f[800]
Optionally parallelizable

Ketje targeting lightweight
Using reduced-round Keccak-f[400] or Keccak-f[200]

3 / 19

Overview

Overview

Inspired by Keccak and Duplex
Keyak targeting high performances

Using reduced-round Keccak-f[1600] or Keccak-f[800]
Optionally parallelizable

Ketje targeting lightweight
Using reduced-round Keccak-f[400] or Keccak-f[200]

3 / 19

Overview

Overview

Inspired by Keccak and Duplex
Keyak targeting high performances

Using reduced-round Keccak-f[1600] or Keccak-f[800]
Optionally parallelizable

Ketje targeting lightweight
Using reduced-round Keccak-f[400] or Keccak-f[200]

3 / 19

Overview

Two approaches

Keyak:

DuplexWrap
A (strong) permutation

fixed #rounds

Block-oriented
Cryptanalysis

permutation-level

Ketje:

MonkeyWrap
A (thin) round function

#rounds in phases

Stream-oriented
Cryptanalysis

round function +
construction

4 / 19

Overview

Two approaches

Keyak:

DuplexWrap
A (strong) permutation

fixed #rounds

Block-oriented
Cryptanalysis

permutation-level

Ketje:

MonkeyWrap
A (thin) round function

#rounds in phases

Stream-oriented
Cryptanalysis

round function +
construction

4 / 19

Keyak

Outline

1 Overview

2 Keyak

3 Ketje

4 Conclusions and Current Developments

5 / 19

Keyak

Keyak goals

Nonce-based AE function

128-bit security (incl. multi-target)
Sequence of header-body pairs

keeping the state during the session

Optionally parallelizable
Using reduced-round Keccak-f[1600] or Keccak-f[800], to allow

implementation re-use
cryptanalysis re-use
reasonable side-channel protections

(… and because we like it …)

6 / 19

Keyak

Keyak goals

Nonce-based AE function

128-bit security (incl. multi-target)
Sequence of header-body pairs

keeping the state during the session

Optionally parallelizable
Using reduced-round Keccak-f[1600] or Keccak-f[800], to allow

implementation re-use
cryptanalysis re-use
reasonable side-channel protections

(… and because we like it …)

6 / 19

Keyak

Keyak goals

Nonce-based AE function

128-bit security (incl. multi-target)
Sequence of header-body pairs

keeping the state during the session

Optionally parallelizable
Using reduced-round Keccak-f[1600] or Keccak-f[800], to allow

implementation re-use
cryptanalysis re-use
reasonable side-channel protections

(… and because we like it …)

6 / 19

Keyak

Keyak goals

Nonce-based AE function

128-bit security (incl. multi-target)
Sequence of header-body pairs

keeping the state during the session

Optionally parallelizable
Using reduced-round Keccak-f[1600] or Keccak-f[800], to allow

implementation re-use
cryptanalysis re-use
reasonable side-channel protections

(… and because we like it …)

6 / 19

Keyak

Keyak goals

Nonce-based AE function

128-bit security (incl. multi-target)
Sequence of header-body pairs

keeping the state during the session

Optionally parallelizable
Using reduced-round Keccak-f[1600] or Keccak-f[800], to allow

implementation re-use
cryptanalysis re-use
reasonable side-channel protections

(… and because we like it …)

6 / 19

Keyak

Keyak goals

Nonce-based AE function

128-bit security (incl. multi-target)
Sequence of header-body pairs

keeping the state during the session

Optionally parallelizable
Using reduced-round Keccak-f[1600] or Keccak-f[800], to allow

implementation re-use
cryptanalysis re-use
reasonable side-channel protections

(… and because we like it …)

6 / 19

Keyak

Keyak goals

Nonce-based AE function

128-bit security (incl. multi-target)
Sequence of header-body pairs

keeping the state during the session

Optionally parallelizable
Using reduced-round Keccak-f[1600] or Keccak-f[800], to allow

implementation re-use
cryptanalysis re-use
reasonable side-channel protections

(… and because we like it …)

6 / 19

Keyak

Keyak goals

Nonce-based AE function

128-bit security (incl. multi-target)
Sequence of header-body pairs

keeping the state during the session

Optionally parallelizable
Using reduced-round Keccak-f[1600] or Keccak-f[800], to allow

implementation re-use
cryptanalysis re-use
reasonable side-channel protections

(… and because we like it …)

6 / 19

Keyak

Duplex layer

Keccak-p[1600, nr = 12] or Keccak-p[800, nr = 12]

7 / 19

Keyak

DuplexWrap layer

DuplexWrap
is a nonce-based authenticated encryption mode;
works on sequences of header-body pairs.

0 A(1)
1 B(1)

C(1) T(1)

A(1) contains the key and must be unique, e.g.,
A(1) contains a session key used only once;
A(1) contains a key and a nonce.

In general: A(1) = key||nonce||associated data.

8 / 19

Keyak

DuplexWrap layer

DuplexWrap
is a nonce-based authenticated encryption mode;
works on sequences of header-body pairs.

0 A(1)
1 B(1)

C(1) T(1)

A(1) contains the key and must be unique, e.g.,
A(1) contains a session key used only once;
A(1) contains a key and a nonce.

In general: A(1) = key||nonce||associated data.

8 / 19

Keyak

DuplexWrap layer

DuplexWrap
is a nonce-based authenticated encryption mode;
works on sequences of header-body pairs.

0 A(1)
1 B(1)

C(1) T(1)

A(2) B(2)

C(2) T(2)

A(1) contains the key and must be unique, e.g.,
A(1) contains a session key used only once;
A(1) contains a key and a nonce.

In general: A(1) = key||nonce||associated data.

8 / 19

Keyak

DuplexWrap layer

DuplexWrap
is a nonce-based authenticated encryption mode;
works on sequences of header-body pairs.

0 A(1)
1 B(1)

C(1) T(1)

A(2) B(2)

C(2) T(2)

A(3)

T(3)

A(1) contains the key and must be unique, e.g.,
A(1) contains a session key used only once;
A(1) contains a key and a nonce.

In general: A(1) = key||nonce||associated data.

8 / 19

Keyak

Inside DuplexWrap

0 d d d d

+00 +00 +10 0

9 / 19

Keyak

Inside DuplexWrap

0 d d d d d d

+00 +00 +01 +11 +10 0

9 / 19

Keyak

Keyak instances and efficiency

Name Width b Parallelism P

Ocean Keyak 1600 4
Sea Keyak 1600 2
Lake Keyak 1600 1
River Keyak 800 1

Processing for Lake Keyak
long messages: about 50 % of SHAKE128
short messages: 24 rounds

Working memory footprint
reasonable on high- and middle-end platforms
not ideal on constrained platforms

10 / 19

Keyak

Security of Keyak

Generic security of Keyak thanks to a combination of results:

Sound tree hashing modes [IJIS 2013] for parallelized modes

Keyed sponge indistinguishability [SKEW 2011 + work in progress]

SpongeWrap generic security [SAC 2011], adapted to DuplexWrap

Safety margin against shortcut attacks:

Practical attacks up to 6 rounds [Dinur et al. SHA-3 2014]

Academic attacks up to 9 rounds [Dinur et al. SHA-3 2014]

11 / 19

Ketje

Outline

1 Overview

2 Keyak

3 Ketje

4 Conclusions and Current Developments

12 / 19

Ketje

Ketje goals

Nonce-based AE function

96-bit or 128-bit security (incl. multi-target)
Sequence of header-body pairs

keeping the state during the session

Small footprint
Target niche: secure channel protocol on secure chips

banking card, ID, (U)SIM, secure element, FIDO, etc.
secure chip has strictly incrementing counter

Using reduced-round Keccak-f[400] or Keccak-f[200], to allow
implementation re-use
cryptanalysis re-use
reasonable side-channel protections

(… and because we like it …)

13 / 19

Ketje

Inside Ketje: the MonkeyDuplex layer

nstart = 12 rounds should provide strong instance separation

nstep = 1, r = 2b/25 should avoid single-instance state retrieval

nstride = 6 rounds should avoid a forgery with one instance

14 / 19

Ketje

Inside MonkeyWrap

1

st
ar
t

st
ep

st
ep

st
ep

st
ep

st
ri
d
e

st
ep

+00 +00 +01 +11 +10 0

15 / 19

Ketje

Ketje instances and lightweight features

feature Ketje Jr Ketje Sr

state size 25 bytes 50 bytes
block size 2 bytes 4 bytes

processing computational cost
initialization per session 12 rounds 12 rounds
wrapping per block 1 round 1 round
8-byte tag comp. per message 9 rounds 7 rounds

16 / 19

Conclusions and Current Developments

Outline

1 Overview

2 Keyak

3 Ketje

4 Conclusions and Current Developments

17 / 19

Conclusions and Current Developments

Current developments

Optimized software implementations
Gross estimations can be derived from Keccak
Lake Keyak expected twice faster than SHAKE128
There might be interesting improvement with new AVX512
(VPTERNLOG, rotations and 32 registers)

Hardware implementations

18 / 19

Conclusions and Current Developments

Conclusions

Thanks for your attention!

Q?

19 / 19

	Overview
	Keyak
	Ketje
	Conclusions and Current Developments

