Pipelineable On-Line Encryption with Tag (POET)

Farzaneh Abed\(^2\) Scott Fluhrer\(^1\) John Foley\(^1\)
Christian Forler\(^2\) Eik List\(^2\) Stefan Lucks\(^2\) David McGrew\(^1\)
Jakob Wenzel\(^2\)

\(^1\) Cisco Systems, \(^2\) Bauhaus-Universität Weimar

DIAC 2014

Santa Barbara, CA
Motivation
- Case Study: OTN
- Decryption Misuse

CAESAR Submission POET

Security of POET
Section 1

Motivation
Case Study: Optical Transport Network (OTN)

Task:

- Secure network traffic . . .
Case Study: Optical Transport Network (OTN)

Task:
- Secure network traffic . . .
- . . . of real-time applications . . .
Case Study: Optical Transport Network (OTN)

Task:

- Secure network traffic . . .
- . . . of real-time applications . . .
- . . . in an Optical Transport Network (OTN)
Case Study: Optical Transport Network (OTN)

Task:

- **Secure** network traffic . . .
- . . . of real-time applications . . .
- . . . in an Optical Transport Network (OTN)
 - High throughput: (40 - 100 Gbit/s)
 - Low latency: (few clock cycles)
 - Large message frames: (64 KB)
 - (usually consist of multiple TCP/IP or UDP/IP packages)
Requirements for OTNs

Security requirements:
- Data privacy (IND-CPA), and
- Data integrity (INT-CTXT)
Requirements for OTNs

Security requirements:
- Data privacy (IND-CPA), and
- Data integrity (INT-CTXT)

Functional requirements:
- On-line encryption/decryption
Problem and Workarounds

Problem: High Latency of Authenticated **Decryption**

1. Decryption of the *entire* message
2. Verification of the authentication tag

For 64-kB frames we have 4,096 ciphertext blocks (128 bits)
Motivation

Case Study: OTN

Problem and Workarounds

Problem: High Latency of Authenticated **Decryption**

1. Decryption of the *entire* message
2. Verification of the authentication tag

For 64-kB frames we have 4,096 ciphertext blocks (128 bits)

- Workarounds:
 - Decrypt-then-mask? [Fouque et al. 03] ⇒ latency again
 - Pass plaintext beforehand and hope...
Motivation

Case Study: OTN

Problem and Workarounds

Problem: High Latency of Authenticated Decryption

1. Decryption of the *entire* message
2. Verification of the authentication tag

For 64-kB frames we have 4,096 ciphertext blocks (128 bits)

- **Workarounds:**
 - Decrypt-then-mask? [Fouque et al. 03] ⇒ latency again
 - Pass plaintext beforehand and hope...

- **Drawbacks:**
 - Plaintext information would leak if authentication tag invalid
 - Literature calls this setting *decryption-misuse* [Fleischmann, Forler, and Lucks 12]
How Severe is Decryption-Misuse?

- Puts security at high risk
- CCA-adversary may inject controlled manipulations
- Particularly, CTR-mode based AE schemes

\[C \oplus \Delta \rightarrow_{Dec} M \oplus \Delta \]
How Severe is Decryption-Misuse?

- Puts security at high risk
- CCA-adversary may inject controlled manipulations
- Particularly, CTR-mode based AE schemes

\[C \oplus \Delta \rightarrow_{\text{Dec}} M \oplus \Delta \]

Decryption-misuse is not covered by existing CCA3-security proofs
Decryption Misuse Resistance

- Best to wish for:
 - Manipulation of ciphertext block C_i
 \Rightarrow completely random plaintext
 - Contradiction to on-line requirement
Decryption Misuse Resistance

- Best to wish for:
 - Manipulation of ciphertext block C_i ⇒ completely random plaintext
 - Contradiction to on-line requirement

- What can we achieve with an on-line encryption scheme?
 - Manipulation of C_i ⇒ M_i, M_{i+1}, \ldots random garbage
 - Adversary sees at best common message prefixes
Decryption Misuse Resistance

- Best to wish for:
 - Manipulation of ciphertext block C_i ⇒ completely random plaintext
 - Contradiction to on-line requirement

- What can we achieve with an on-line encryption scheme?
 - Manipulation of C_i ⇒ M_i, M_{i+1}, \ldots random garbage
 - Adversary sees at best common message prefixes

- The security notion of OPRP-CCA covers this behaviour [Bellare et al. 01]
On-Line Permutation

On-Line Pseudo Random Permutation (OPRP)

Like a PRP with the following property:
Plaintexts with common prefix \rightarrow ciphertexts with common prefix

(Bellare et al.; “Online Ciphers and the Hash-CBC Construction”; CRYPTO’01)
Motivation

Decryption Misuse

OPRP-CCA

Definition (OPRP-CCA Advantage)

Let P be a random on-line permutation, $\Pi = (K, E, D)$ an on-line encryption scheme, $k \xleftarrow{\$} K()$, and A be an adversary. Then we have

$$
\text{Adv}_{\Pi}^{\text{OPRP-CCA}}(A) = \left| \Pr \left[A^{E_k(\cdot), D_k(\cdot)} \xrightarrow{\mathcal{U}} 1 \right] - \left[A^{P(\cdot), P^{-1}(\cdot)} \xrightarrow{\mathcal{U}} 1 \right] \right|
$$
Intermediate (Authentication) Tags

Assume an OPRP-CCA secure encryption scheme

- Recap: Modifying $C_i \implies M_i, M_{i+1}, \ldots, M_M$ random garbage
- Redundancy in the plaintext (e.g., checksum)
Intermediate (Authentication) Tags

Assume an OPRP-CCA secure encryption scheme

- Recap: Modifying $C_i \implies M_i, M_{i+1}, \ldots, M_M$ random garbage
- Redundancy in the plaintext (e.g., checksum)

\implies intermediate authentication tags
Intermediate (Authentication) Tags

Assume an OPRP-CCA secure encryption scheme

- Recap: Modifying $C_i \Rightarrow M_i, M_{i+1}, \ldots, M_M$ random garbage
- Redundancy in the plaintext (e.g., checksum) \(\Rightarrow\) intermediate authentication tags

- Common network packets (TCP/IP, UDP/IP) have a checksum \(\Rightarrow\) OTN: 16-bit integrity for free (per packet)
Section 2

CAESAR Submission POET
Pipeline On-Line Encryption (POE)

- POE is a OPRP-CCA secure enc scheme [Abed et al. 14]
- Actually, it provides birthday bound security
- POE is used to process a message or ciphertext
We just borrowed the PMAC design [Black & Rogaway 02]

Nonce is (part of) the header
Well pipelineable

1 BC + 2 AXU hash-function (F) calls per block

Borrows tag-splitting procedure from McOE

Robust against nonce- and decryption-misuse
Requirements for F

Basic Assumption (F is AXU)

\[
F : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \text{ is } \varepsilon\text{-AXU}
\]
Requirements for F

Basic Assumption (F is AXU)

$$F : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \text{ is } \epsilon\text{-AXU}$$

Further Assumption (Cascade F^b is AXU)

$$F^b_{\kappa}(X) := F_{\kappa}(\ldots(F_{\kappa}(X_1) \oplus X_2), \ldots) \oplus X_b) \text{ is } b \cdot \epsilon\text{-AXU}$$
Requirements for F

Basic Assumption (F is AXU)

$$F : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n \text{ is } \epsilon\text{-AXU}$$

Further Assumption (Cascade F^b is AXU)

$$F^b(X) := F^\kappa(\ldots(F^\kappa(X_1) \oplus X_2), \ldots) \oplus X_b) \text{ is } b \cdot \epsilon\text{-AXU}$$

Thanks to Mridul Nandi for pointing out this implicit assumption for F in our initial version
Requirements for F

Basic Assumption (F is AXU)

$$F : \{0, 1\}^k \times \{0, 1\}^n \to \{0, 1\}^n \text{ is } \epsilon\text{-AXU}$$

Further Assumption (Cascade F^b is AXU)

$$F^b_{\kappa}(X) := F_{\kappa}(\ldots(F_{\kappa}(X_1) \oplus X_2), \ldots) \oplus X_b \text{ is } b \cdot \epsilon\text{-AXU}$$

Thanks to Mridul Nandi for pointing out this implicit assumption for F in our initial version

Nandi will give you more details about this in the next talk :-(
Recommended Instantiations of F

Primary Recommendation: 4-Round-AES

- $10 + 4 + 4 = 18$ AES rounds/block
- ϵ-AXU with $\epsilon \approx 2^{-113}$ [Daemen et al. 09]
Recommended Instantiations of F

Primary Recommendation: 4-Round-AES

- $10 + 4 + 4 = 18$ AES rounds/block
- ϵ-AXU with $\epsilon \approx 2^{-113}$ [Daemen et al. 09]

Secondary Recommendation: 10-Round-AES (Full-AES)

- $3 \cdot 10 = 30$ AES rounds/block
- Full AES should be 2^{-128}-AXU
Recommended Instantiations of F

Primary Recommendation: 4-Round-AES

- $10 + 4 + 4 = 18$ AES rounds/block
- ϵ-AXU with $\epsilon \approx 2^{-113}$ [Daemen et al. 09]

Secondary Recommendation: 10-Round-AES (Full-AES)

- $3 \cdot 10 = 30$ AES rounds/block
- Full AES should be 2^{-128}-AXU

Withdrawn Recommendation: GF-128 multiplication

Reason: Weak-Key Analysis of POET

Abdelraheem, Bogdanov and Tischhauser applied the observations of Cid and Procter [CidP13] to POET

https://eprint.iacr.org/2014/226
Software Performance

- Software performance with Full-AES [Bogdanov et al. 14]
 - Single message scenario: 4.62 cpb
 - Multi message scenario: 2.75 cpb
Software Performance

- Software performance with Full-AES [Bogdanov et al. 14]
 - Single message scenario: 4.62 cpb
 - Multi message scenario: 2.75 cpb

- Estimated software performance with 4-AES
 - Single message scenario: $(18/30) \cdot 4.62 \text{ cpb} \approx 2.77 \text{ cpb}
 - Multi message scenario: $(18/30) \cdot 2.75 \text{ cpb} = 1.65 \text{ cpb}
Software Performance

- Software performance with Full-AES [Bogdanov et al. 14]
 - Single message scenario: 4.62 cpb
 - Multi message scenario: 2.75 cpb

- Estimated software performance with 4-AES
 - Single message scenario: \((18/30) \cdot 4.62 \text{ cpb} \approx 2.77 \text{ cpb}\)
 - Multi message scenario: \((18/30) \cdot 2.75 \text{ cpb} = 1.65 \text{ cpb}\)

We are looking for developers for high speed implementations

(https://github.com/cforler/poet)
Section 3

Security of POET
Birthday bound security

- POET is CCA3 secure against \textit{nonce-respecting} adversaries

\[
\text{Adv}^{\text{CCA3}}_\Pi(q, \ell, t) \leq \text{Adv}^{\text{IND-CPA}}_\Pi(q, \ell, t') + \text{Adv}^{\text{INT-CTX}}_\Pi(q, \ell, t'') \quad (\ast)
\]
Birthday bound security

- POET is CCA3 secure against *nonce-respecting* adversaries

\[
\text{Adv}_{\Pi}^{\text{CCA3}}(q, \ell, t) \leq \text{Adv}_{\Pi}^{\text{IND-CCA}}(q, \ell, t') + \text{Adv}_{\Pi}^{\text{INT-CTXT}}(q, \ell, t'') \quad (*)
\]
Birthday bound security

- POET is CCA3 secure against *nonce-respecting* adversaries
 \[
 \text{Adv}^\text{CCA3} (q, \ell, t) \leq \text{Adv}^\text{IND-CCA} (q, \ell, t') + \text{Adv}^\text{INT-CTXT} (q, \ell, t'') \quad (*)
 \]

- POET is OCCA3 secure against *nonce-ignoring* adversaries
 \[
 \text{Adv}^\text{OCCA3} (q, \ell, t) \leq \text{Adv}^\text{OPRP-CCA} (q, \ell, t') + \text{Adv}^\text{INT-CTXT} (q, \ell, t'') \quad (*)
 \]

\((*) t', t'' \in O(t)\)
A instantly wins if a **bad event** occurs
\(\mathcal{A} \) instantly wins if a **bad event** occurs

1. \(\mathcal{A} \) can distinguish \(E \) from random permutation
\(A \) instantly wins if a **bad event** occurs

1. \(A \) can distinguish \(E \) from random permutation
2. Header collision (\(\Pr[COLL^{ad}] \))
A instantly wins if a **bad event** occurs

1. A can distinguish E from random permutation
2. Header collision ($\Pr[COLL^{ad}]$)
3. Top row collision ($\Pr[COLL^{top}]$)
A instantly wins if a **bad event** occurs

1. A can distinguish E from random permutation
2. Header collision ($\Pr[COLL^{ad}]$)
3. Top row collision ($\Pr[COLL^{top}]$)
4. Bottom row collision ($\Pr[COLL^{bot}]$)
\(A \) instantly wins if a **bad event** occurs

1. \(A \) can distinguish \(E \) from random permutation
2. Header collision (Pr[COLL\text{ad}])
3. Top row collision (Pr[COLL\text{top}])
4. Bottom row collision (Pr[COLL\text{bot}])

\(A \) can distinguish POET without a collison (Pr[NOCOLL])
POET: OPRP-CCA-Security

- Upper bounds for the four bad events
POET: OPRP-CCA-Security

Upper bounds for the four **bad events**

1. Assume E is secure: $\text{Adv}^{\text{IND-SPRP}}_{E, E^{-1}}(\ell + 2q, O(t))$
Upper bounds for the four **bad events**

1. Assume E is secure: $\text{Adv}_{E,E^{-1}}^{\text{IND-SPRP}}(\ell + 2q, O(t))$
2. Upper bound for header collision: $\ell^2 / 2^n$
Upper bounds for the four bad events

1. Assume E is secure: $\text{Adv}^{\text{IND-SPRP}}_{E,E^{-1}}(\ell + 2q, O(t))$
2. Upper bound for header collision: $\ell^2/2^n$
3. Top row collision implies either
Upper bounds for the four **bad events**

1. Assume E is secure: $\text{Adv}_{E,E^{-1}}^{\text{IND-SPRP}}(\ell + 2q, O(t))$

2. Upper bound for header collision: $\ell^2 / 2^n$

3. Top row collision implies either
 - Collision with a final message block: $\approx \ell^2 \epsilon$
Upper bounds for the four bad events

1. Assume E is secure: $\text{Adv}_{E,E^{-1}}^{\text{IND-SPRP}}(\ell + 2q, O(t))$
2. Upper bound for header collision: $\ell^2/2^n$
3. Top row collision implies either
 - Collision with a final message block: $\approx \ell^2 \epsilon$
 - Collision between non-final message blocks: $\leq \ell^2 \epsilon/2$
Upper bounds for the four **bad events**

1. Assume E is secure: $\text{Adv}^\text{IND-SPRP}_{E,E^{-1}}(\ell + 2q, O(t))$
2. Upper bound for header collision: $\ell^2 / 2^n$
3. Top row collision implies either
 - Collision with a final message block: $\approx \ell^2 \epsilon$
 - Collision between non-final message blocks: $\leq \ell^2 \epsilon / 2$
4. Collision in bottom row (see 3.)
Upper bounds for the four **bad events**

1. Assume E is secure: $\text{Adv}^\text{IND-SPRP}_{E,E^{-1}}(\ell + 2q, O(t))$
2. Upper bound for header collision: $\ell^2/2^n$
3. Top row collision implies either
 - Collision with a final message block: $\approx \ell^2 \epsilon$
 - Collision between non-final message blocks: $\leq \ell^2 \epsilon/2$
4. Collision in bottom row (see 3.)

$\text{Pr}[\text{NOCOLL}]$ can be upper bound by $9 \cdot \ell^2/(2^n - 3\ell)$
POET: OPRP-CCA-Security

- **Upper bounds for the four bad events**
 1. Assume E is secure: $\text{Adv}^{\text{IND-SPRP}}_{E,E^{-1}}(\ell + 2q, O(t))$
 2. Upper bound for header collision: $\ell^2 / 2^n$
 3. Top row collision implies either
 - Collision with a final message block: $\approx \ell^2 \epsilon$
 - Collision between non final message blocks: $\leq \ell^2 \epsilon / 2$
 4. Collision in bottom row (see 3.)

- $\text{Pr}[\text{NOCOLL}]$ can be upper bound by $9 \cdot \ell^2 / (2^n - 3\ell)$

\[
\text{Adv}^{\text{OPRP-CCA}}_{\Pi}(q, \ell, t) \leq 4\ell^2 \epsilon + \frac{9\ell^2}{2^n - 3\ell} + \text{Adv}^{\text{IND-SPRP}}_{E,E^{-1}}(\ell + 2q, O(t))
\]
POET: INT-CTXT-Security

- INT-CTXT proof is game-based
- Combines the ideas from its OPRP-CCA proof and the INT-CTXT proof from McOE
- Details (→ CAESAR submission)

INT-CTXT Advantage

\[
\text{Adv}_{\text{POET}}^{\text{INT-CTXT}}(q, \ell, t) \leq (\ell + 2q)^2/2^n + \frac{q}{2^n - q} + \text{Adv}_{\Pi}^{\text{OPRP-CCA}}(q, \ell, t)
\]
Restated Security Claims

<table>
<thead>
<tr>
<th>Security Claims</th>
<th>Bits of Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidentiality for the plaintext</td>
<td>(\log_2(2^{128} - c \cdot \epsilon \cdot \ell^2))</td>
</tr>
<tr>
<td>Integrity for the plaintext</td>
<td>(\log_2(2^{128} - c \cdot \epsilon \cdot \ell^2))</td>
</tr>
<tr>
<td>Integrity for the associated data</td>
<td>(\log_2(2^{128} - c \cdot \epsilon \cdot \ell^2))</td>
</tr>
<tr>
<td>Integrity for the public message number</td>
<td>(\log_2(2^{128} - c \cdot \epsilon \cdot \ell^2))</td>
</tr>
<tr>
<td>Security against key recovery</td>
<td>128</td>
</tr>
<tr>
<td>Security against tag guessing</td>
<td>128</td>
</tr>
</tbody>
</table>

Yu Sasaki pointed out that *our stated security claims had been confusing*
Conclusion

POET

- is non-sequential and on-line
- support for intermediate tags
- is robust against nonce- and decryption-misuse
 (OCCA3-secure = OPRP-CCA + INT-CTX)
- fulfills the demanding requirements of high-speed networks
Conclusion

POET
- is non-sequential and on-line
- support for intermediate tags
- is robust against nonce- and decryption-misuse
 \((\text{OCCA3-secure} = \text{OPRP-CCA} + \text{INT-CTX})\)
- fulfills the demanding requirements of high-speed networks

Final Remark: Cryptanalysis, fruitful remarks and third party implementation etc. will be rewarded!
The End

Thank you for your attention!

POET Homepage
http://www.uni-weimar.de/de/medien/professuren/mediensicherheit/research/poet/
POET needs five 128-bit keys: K, K_1, and K_2, L, and L_T.

They are derived from a 128 bit master key SK

- $K = E_{SK}(0)$
- $K_1 = E_{SK}(2)$
- $L = E_{SK}(1)$
- $K_2 = E_{SK}(3)$
- $L_T = E_{SK}(4)$

(currently I am analysing the case: $K_1 = K_2$ and $L_T = 7L$)