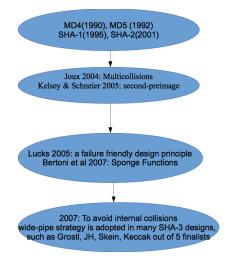
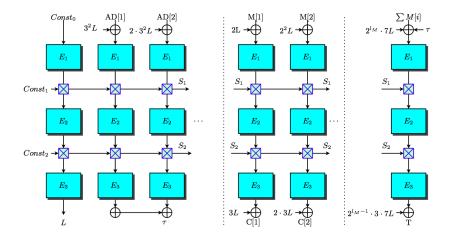
CAESAR candidate Marble


Jian Guo

DIAC – 24 August 2014 @Santa Barbara, CA, USA

- Online
- Parallelizable
- Software oriented
- Decryption-misuse resistant, unverified plaintext release
- Nonce-misuse resistant, or nonce-free
- Low setup overhead
- Support of extreme usecases
- Full security


The need of "wide-pipe"

Lesson from hash function development

use double or even larger internal state to avoid internal collisions

Design Overview

- E_1, E_2, E_3 are block-ciphers
- ► TRANS(*x*, *y*): a transition function with MDS property.
- ► '·' multiplication is in GF(2¹²⁸).

Choices are made to optmize the software performance:

- E₁, E₂, E₃ are 4-round AES, every message block is processed by 12 AES rounds.
- ► TRANS $(x, y) = (x + y, 3 \cdot x + y)$, division-free for the inverse computation.

Choices are made to optmize the software performance:

- ► E₁, E₂, E₃ are 4-round AES, every message block is processed by 12 AES rounds.
- ► TRANS $(x, y) = (x + y, 3 \cdot x + y)$, division-free for the inverse computation.

achieve a speed of 1.6 cpb for long message and 1.7 cpb for 8KB message, tested on Intel(R) Core(TM) i5-4570 CPU @ 3.20GHz (Haswell Family), 12 rounds AES takes 0.6 cpb only, room to improve.

Choices are made to optmize the software performance:

- ► E₁, E₂, E₃ are 4-round AES, every message block is processed by 12 AES rounds.
- ► TRANS $(x, y) = (x + y, 3 \cdot x + y)$, division-free for the inverse computation.

achieve a speed of 1.6 cpb for long message and 1.7 cpb for 8KB message, tested on Intel(R) Core(TM) i5-4570 CPU @ 3.20GHz (Haswell Family), 12 rounds AES takes 0.6 cpb only, room to improve.

Options

support the use of 128-bit nonce, by prepending it to the associated data.

Choices are made to optmize the software performance:

- ► E₁, E₂, E₃ are 4-round AES, every message block is processed by 12 AES rounds.
- ► TRANS $(x, y) = (x + y, 3 \cdot x + y)$, division-free for the inverse computation.

achieve a speed of 1.6 cpb for long message and 1.7 cpb for 8KB message, tested on Intel(R) Core(TM) i5-4570 CPU @ 3.20GHz (Haswell Family), 12 rounds AES takes 0.6 cpb only, room to improve.

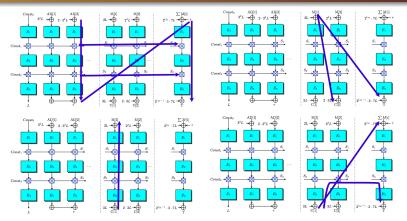
Options

- support the use of 128-bit nonce, by prepending it to the associated data.
- Better security margin with AES for E₁, E₂, E₃, yet with a speed of 3.0 cpb.

In addition to the usual use, Marble supports many extreme usecases:

- Encryption/Decryption only (opting out the tag)
- Integrity of associated data only.
- Integrity of message MAC only (opt out the ciphertext).

2^{*n*} security, not "birthday bound", in **both** nonce-respecting and nonce-misuse scenarios.


Privacy	2 ¹²⁸
Authenticity	2 ¹²⁸

2^{*n*} security, not "birthday bound", in **both** nonce-respecting and nonce-misuse scenarios.

Privacy	2 ¹²⁸
Authenticity	2 ¹²⁸

Privacy in nonce-misuse scenario: prefixed message blocks share the same ciphertext prefix.

Security Evaluations

- Differential/Linear Cryptanalysis: any complete path will involve at least 12 rounds AES, with 75 active sboxes.
- Inner collisions: collision on single chain is NOT "detectable"; collision on double chains requires 2ⁿ.
- Nandi's attack does not apply even with complexity 2ⁿ due to the 2n-bit chain.

We welcome security proof of Marble mode, when the three block ciphers are idealized.

- Hardware implementations
- Improving the software implementations with AES-NI
- Implementations without AES-NI
- Implementations for Atmel AVR
- Security proof when the underlying blockciphers are ideal, extend tag-splitting to arbitary-length message to avoid XLS.

Thank you!

Questions?