PrØST
A round-1 CAESAR submission

Elif Bilge Kavun ¹ Martin M. Lauridsen ² Gregor Leander ¹
Christian Rechberger ² Peter Schwabe ³ Tolga Yalçın ⁴

mneh @ dtu.dk

¹Horst Görtz Institute for IT-Security, Ruhr University Bochum, Germany
²DTU Compute, Technical University of Denmark, Denmark
³Digital Security Group, Radboud University Nijmegen, The Netherlands
⁴University of Information Science and Technology, Ohrid, Republic of Macedonia

DIAC 2014
Santa Barbara, August 23, 2014
Motivation + Features
Motivation + Features

As opposed to **mode designs** we wanted to focus on designing a **solid primitive**.
We chose a **permutation** due to its

- Simplicity
- Not requiring a key schedule

We plug the **Prøst** permutation into three excellent existing modes

- Upshot: Any analysis on those modes applies to our submissions

Features of **Prøst** which are not in AES (and thus AES-GCM)

- Easy bit-sliced implementation
- Straightforward constant-time implementation
- Cheaper countermeasures due to 4-bit Sbox

Excellent bounds against many attack vectors despite relatively small state
Specification + design rationale
Notation and state representation

- We use $\text{PRØST-}n$ for the permutation on $2n$ bits
- Permutation size is 256 bits ($n = 128$) or 512 bits ($n = 256$)
- State is three-dimensional block of size $4 \times 4 \times d$, so $d \in \{16, 32\}$

(We use Keccak notation for state parts)
The \textsc{Prøst} permutation

\textsc{Prøst-}n iteratively applies round permutations R_i T times, so

\[\text{Prøst-}n = R_{T-1} \circ \cdots \circ R_0. \]

- For \textsc{Prøst-}128 we have $T = 16$ rounds
- For \textsc{Prøst-}256 we have $T = 18$ rounds

Each round R_i, $0 \leq i < T$, is composed of smaller permutations:

\[R_i = \text{AddConstants}_i \circ \text{ShiftPlanes}_i \circ \text{MixSlices} \circ \text{SubRows} \]

(Subscript i denotes round-number dependency)
The **Prost** round permutation

SubRows
MixSlices
ShiftPlanes;
AddConstants;

4-bit Sbox is applied to each row of the state. Why 4-bit?

- Well understood
- **Compact** implementation
- **Cheap masking** countermeasure

| Involution? | Algebraic degree | Instr. (AVR) | Max DP (#) | Max $|\epsilon|$ (#) |
|-------------|------------------|--------------|-------------|-----------------|
| Present | no | (3, 3, 3, 2) | 20 | 2^{-2} (24) |
| Prince | no | (3, 3, 3, 3) | 32 | 2^{-2} (15) |
| Prost | yes | (2, 2, 3, 3) | 10 | 2^{-2} (24) |
The **PROST** round permutation

- SubRows
- MixSlices
- ShiftPlanes
- AddConstants

Each **slice** (seen over \mathbb{F}_2^{16}) is multiplied by a 16×16 matrix M over \mathbb{F}_2.

This matrix

- Has linear/differential **branch number 5** (MDS)
- Is **involutive**
- Has low density: **Hamming weight 88**
 (lowest we could find with given conditions w/ hardware assisted search)
The **PRØST** round permutation

- SubRows
- MixSlices
- ShiftPlanes;
- AddConstants;

Rotates each of the 4 **planes** in the positive \(z \) direction (front towards back).

Like AES **ShiftRows**, but using different offsets every second round, from a **rotation matrix** \(\pi \in \mathbb{Z}_d^{2 \times 4} \).

Rotation constants chosen to

- Maximize **diffusion**
- Maximize differential/linear **trail weights**
- Use as many **multiples of 8** as possible, otherwise minimize value
The **Prøst** round permutation

SubRows
MixSlices
ShiftPlanes;
AddConstants;

In each round, a constant is XORed to **each register** of the state to make rounds R_i different.

The constant added to the jth lane in **round** i is

$$
\begin{cases}
 c_1 \ll (i + j) & \text{when } j \text{ is even} \\
 c_2 \ll (i + j) & \text{when } j \text{ is odd}
\end{cases}
$$

Constants c_1, c_2 are derived from Pi.
Security analysis
Analysis: Differential/Linear trail probabilities
Numbers are \log_2 of upper bound, **underlined** are non-tight

Ascon: -30
ICEPOLE: -18
Ascon: -50
ICEPOLE: -28
Ascon: -100
Keyak: -74
PRIMATE-80: -100
PRIMATE-120: -196
Ascon: -150
ICEPOLE: -84
Keyak: -148
NORX-32: -584
NORX-64: -836
Ascon: -150
ICEPOLE: -84
Keyak: -148
PRIMATE-80: -100
PRIMATE-120: -196
Ascon: -100
Keyak: lake, sea and ocean

Full permutation
Analysis: Differential/Linear trail probabilities

Numbers are \log_2 of upper bound, underlined are non-tight

Ascon: -30
ICEPOLE: -18
Ascon: -50
ICEPOLE: -28
Ascon: -100
Keyak: -74
PRIMATE-80: -100
PRIMATE-120: -196
Ascon: -150
ICEPOLE: -84
Keyak: -148
NORX-32: -584
NORX-64: -836
Ascon: -150
ICEPOLE: -84
Keyak: -148
Prøst-128: -82
Prøst-128: -170
Prøst-128: -210
Prøst-128: -228
Prøst-128: -260
Prøst-128: -192
Prøst-128: -210
Prøst-128: -228
Prøst-128: -260
Prøst-128: -430

Full permutation

Keyak: lake, sea and ocean
Security analysis: Higher-order attacks

The number of rounds T chosen allow zero-sum distinguishers when Sbox degree is 2

The Prøst Sbox yields algebraic degrees $(2, 2, 3, 3)$, so we believe our choice is conservative

Interesting problem:
- Upper bounding algebraic degree when Sbox has mixed degrees
Proposals
The proposals: We propose the use of \textsc{Prøst} in...

- Block cipher-based \textsc{COPA} and \textsc{OTR}
 - by using the Single-key Even-Mansour construction
 \[
 \begin{array}{c}
 \text{K} \\
 \hline
 \text{x} \quad \oplus \quad \text{Prøst-n} \quad \oplus \\
 \text{P}_{n,K}
 \end{array}
 \]

- Permutation-based \textsc{APE} “as is”
 - Using rate/capacity 128/128 for \textsc{Prøst}-128
 - Using rate/capacity 256/256 for \textsc{Prøst}-256

\begin{itemize}
 \item Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser and Kan Yasuda
 Parallelizable and Authenticated Online Ciphers
 In Asiacrypt 2013, pages 424–443.

 \item Kazuhiko Minematsu
 Parallelizable Rate-1 Authenticated Encryption from Pseudorandom Functions
 In Eurocrypt 2014, pages 275–292.

 \item Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha and Kan Yasuda
 APE: Authenticated Permutation-Based Encryption for Lightweight Cryptography
 In FSE 2014
\end{itemize}
Fractional data

What we observed:

- Many **elegant** designs are crippled by **inelegant** handling of fractional data to avoid ciphertext expansion
- Begging for implementation errors

For simplicity

- **Always** $10^*\text{-pad the message}$

What do we gain?

- No special cases for fractional message blocks
- Avoids extra code/circuit size in software/hardware
- Less prone to implementation errors (quite frequent in practice!)
- Implementations are easier to optimize
Security goals

- **PRØST-COPA/PRØST-OTR:**
 - Mode proof: Birthday-bound in block size assuming underlying PRP
 - SK Even-Mansour: Birthday-bound attacks on $\tilde{P}_{n,K}$
 - Thus, we conservatively claim $2n/4$ bits of security

- **PRØST-APE:**
 - $c/2$ bits security assuming ideal permutation

<table>
<thead>
<tr>
<th>Rank</th>
<th>Proposal</th>
<th>PT\text{CONF}</th>
<th>PT\text{INT}</th>
<th>AD\text{INT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PRØST-COPA-128</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>PRØST-COPA-256</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>3</td>
<td>PRØST-OTR-128</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>PRØST-OTR-256</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>PRØST-APE-256[256, 256]</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>6</td>
<td>PRØST-APE-128[128, 128]</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
</tbody>
</table>
Performance
Performance

Preliminary figures from vectorized implementations

- Intel(R) Core(TM) i5-3210M CPU @ 2.50 GHz

The Prøst permutation

- 4.24 cpb with 8-way parallelization

For Prøst-COPA

- Roughly 10.6 cpb for long messages

More coming in near future...
Conclusion

Features of Prøst

- Easy bit-sliced implementation
- Straightforward constant-time implementation
- Cheaper countermeasures due to 4-bit Sbox
- No fractional data cases
- Excellent bounds against many attack vectors despite relatively small state
 - Sufficient security margin to reduce # of rounds
- Permutation cheap to inverse
Slides will be available at

http://proest.compute.dtu.dk

Thank you.