PRIMATEs

Elena Andreeva Atul Luykx **Nicky Mouha** Begül Bilgin Florian Mendel Qingju Wang Andrey Bogdanov Bart Mennink Kan Yasuda

APE misuse resistance

APE misuse resistance

HANUMAN

security with ideal permutation

APE misuse resistance

HANUMAN

security with ideal permutation

GIBBON

trade-off speed/security

• Sponge inspired (9)

Sponge inspired

permutation	PRIMATE-80	PRIMATE-120		
security	80 bits	120 bits		
b (state size)	200 bits	280 bits		
c (capacity size)	160 bits	240 bits		
r (rate size)	40 bits	40 bits		

- Lightweight
- Substitution-Permutation-Network (SPN)
- Efficient threshold implementation
- Ideal permutation proof

K, N and T are 80 (resp. 120) bits

- Nonce-based
- Online encryption
- Domain separation: p₁, p₄
- No ciphertext expansion

K, N and T are 80 (resp. 120) bits

Differences with HANUMAN:

- Key addition: state recovery → no key recovery
- Three permutations: p₁, p₂, p₃
- Reduced round permutations (p₂&p₃: 6 rounds) → faster

APE

N is 80 (resp. 120) bits K and T are 160 (resp. 240) bits

Differences with HANUMAN:

- Nonce misuse resistant (common prefix)
- Secure in Releasing Unverified Plaintext (RUP) setting
- Inverse permutation needed

Also using APE: PRØST

PRIMATEs Permutation

Primate-80

200-bit state

Primate-120

Primate-80

200-bit state

5-bit elements

40-bit rate

Primate-120

280-bit state

5-bit elements

40-bit rate

Round Update: CA o MC o SR o SE

p₁, p₂, p₃ and p₄ differ in # of rounds and constants

p_1 p_2

SubElements (S-box)

Primate-80

Primate-120

- Almost bent permutation
- Optimal linear/differential probabilities
- Small area for both plain and DPA-secure implementation

ShiftRows

Primate-80

Primate-120

<< 0

<< 1

<< 2

<< 3

<< 4

<< 5

<< 7

MixColumns

Primate-80

Primate-120

Recursive MDS matrix

$$\otimes \left[\begin{array}{cccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 18 & 2 & 2 & 18 \end{array} \right]^{5}$$

$$\otimes \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 2 & 15 & 9 & 9 & 15 & 2 \end{bmatrix}$$

Lightweight implementation

$\begin{array}{c|c} p_1 & p_2 & p_3 & p_4 \end{array}$

ConstantAddition

Primate-80

Primate-120

- 5-bit Fibonacci LFSR
- Break symmetry between rounds
- Generate different permutations

	p ₁	p_2	p_3	p_4
Number of rounds	12	6	6	12
Initial value of the LFSR	1	24	30	24

PRIMATES Security of PRIMATEs—80/120

- Differential/linear trails for 12 rounds: max. 2⁻¹⁰⁰/2⁻¹⁹⁶
- Impossible differentials: 5/6 rounds
- Collision trails
 - 6 rounds: 84/128 active S-boxes
 - 12 rounds: 162/224 active S-boxes

- ~1300 GE (resp. ~1900 GE)
- 55 cpr (resp. 61 cpr)

AES-GCM

- AES alone is 2600 GE (21 cpr)
- Not all nonce lengths handled in same way

PRIMATEs vs. Ketje

- Ketje Jr.: ~1270 GE reg.
- Ketje Sr.: ~2500 GE reg.

General Info

http://primates.ae

Drunken Monkey Competition

For the **most interesting cryptanalysis** of PRIMATEs as submitted to first round of the CAESAR competition, we give away an entire crate (24 bottles of 33 cl) of the best beer in the world: the Westvleteren XII Trappist beer.

Entries must be sent to the crypto-competitions mailing list before the -t -f DIAC 2014 The shelps of the color and shelp discounting of the

General Info

http://primates.ae

For the **most interesting cryptanalysis** of PRIMATEs as submitted to first round of the CAESAR competition, we give away an entire crate (24 bottles of 33 cl) of the best beer in the world: the Westvleteren XII Trappist beer.

Entries must be sent to the crypto-competitions mailing list before the -t -f DIAC 2014 The shelps of the color and shelp discounting of the

General Info

Entries must be sent to the crypto-competitions mailing list before the

http://primates.ae

Drunken Monkey Competition

For the most interesting cryptanalysis of PRIMATEs

Deadline: DIAC 2014

Runner-up

In a Nutshell

PRIMATES

- Permutation-based AE
- Lightweight

Three designs

- APE: misuse resistance
- HANUMAN: ideal permutation
- GIBBON: trade-off speed/security

Efficient threshold implementation

Thank You!

Supporting Slides

PRIMATES Ranking w.r.t security

- APE-120
- HANUMAN–120
- GIBBON–120
- APE-80
- HANUMAN–80
- GIBBON–80