Insecurity on XLS and Forging Algorithm on the Mode COPA

Mridul Nandi

Indian Statistical Institute, Kolkata

mridul@isical.ac.in

August 23, 2014 DIAC, UCSB

- Obmain Extension and domain completion.
- Priefly study XLS and COPA.
- We have demonstrated a SPRP distinguisher for XLS which violates the claim in FSE 2007.
- We extend this attack for the mode COPA.
- We propose some alternative secure as well as efficient methods for domain completions.

Domain Extension and Completion

Domain Extension

- Using *n*-bit blockcipher constructing encryption over larger message sizes.
- Easy to define messages of size multiple of *n* (e.g., EME, HCBC, MHCBC etc.).
- Padding may be applied for AE but would not simply work for enciphering.

Domain Completion

- A generic method to make the domain complete (i.e., any message size).
- So far only two methods are known. (1) XLS (proposed by Ristenpart and Rogaway in FSE 2007) and (2) Nandi's construction in CyS 2009.
- Cook et. al proposed for domain completion for smaller sizes.

- Proposed by Ristenpart and Rogaway in FSE 2007.
- A Method of length-preserving encryption (or enciphering) for arbitrary message length.
- It requires an enciphering scheme *E* over ({0,1}ⁿ)⁺ and a blockcipher *E*.
- Replacing *E* by a blockcipher, XLS becomes an enciphering scheme over ∪²ⁿ⁻¹_{i=n} {0,1}ⁱ.
- Used in Authenticated Encryption.

Encryption

Decryption

æ

mix2 is defined as

$$mix2(A,B) = (A \oplus (A \oplus B)^{\ll}, B \oplus (A \oplus B)^{\ll}).$$

- Note that mix2 is linear and hence difference propagate with probability one.
- Inix2 is inverse of itself.

CPCA Distinguisher of XLS for 2n - 1 bit messages

 $\Delta = 0$ $\Delta=\alpha\neq 0$ E $\Delta = 0$ * mix2 $\Delta = \alpha_1$ * $:= \alpha \oplus \alpha^{<<<1}$ ε $\delta = 0$ w.p. $\frac{1}{2}$ mix2 $\delta = 0$ $\Delta = \beta_2$ E $\Delta = \beta$ (observed) C/C'Encryption Query 1 and 2

A ▶

< ∃ >

æ

CPCA Distinguisher of XLS for 2n - 1 bit messages

Description of COPA for complete last block message

V is generated from associated data in a similar fashion.
M[d] = ⊕^{d-1}_{i=1}M[i].

Description of COPA for other messages

- *m* is the partial block message.
- $\bullet \ \mathcal{F}$ represents COPA for complete block messages.
- **E** is the XLS when \mathcal{E} is replaced by blockcipher.

Forging Algorithm on COPA

Forgery Algorithm A_1 .

- Make queries $M_i \in \{0,1\}^n$ and obtains response $(C_i, t'_i || Q_i)$ where $|t'_i| = 1, 1 \le i \le q$.
- ② Find *b* (assume *b* = 0), $|I| = |\{i : t'_i = b\}| \ge q/2$. *I* = *I*₁ ⊔ *I*₂, $|I_1| = |I_2|$.
- 3 Make queries (M_i, m) , $i \in I$, $m \in \{0, 1\}^{n-1}$ and obtains responses $((C_i, D_i), T_i)$.

● Find
$$i \in I_1, j \in I_2, k \in I$$
 s.t.

$$Q_k = \left(\mathbf{R}^{-2}(D_i + Q_i) \right) + \left(D_j + (\mathbf{I} + \mathbf{R}^{-2})(Q_j + D_j) \right),$$

otherwise abort.

S Return forgery query (C_k, D^*, T_j) where

$$D^* = D_j + (\mathbf{I} + \mathbf{R}^{-2})(D_i + Q_i + D_j + Q_j).$$

- It requires about $2^{n/3}$ queries.
- The attacks is reduced to generalized birthday attack for k = 3. In other words, finding three elements x ∈ l₁, y ∈ l₂ and z ∈ l from three lists such that x ⊕ y ⊕ z = 0.
- No known algorithm with time complexity less than $2^{n/2}$.
- Success probability is about 1/2.
- It works for other COPA like constructions.

Nandi's CyS'09 Construction.

æ

New Methods of domain completion of AE.

- We have demonstrated a SPRP distinguisher for XLS which violates the claim in FSE 2007.
- **2** We extend this attack for those AE which use it, e.g., COPA.
- We propose some alternative secure as well as efficient methods for domain completions.

The End

æ

@▶ ∢ ≣▶