
Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

.

CAESAR candidate ICEPOLE

Pawel Morawiecki1,2, Kris Gaj3, Ekawat Homsirikamol3,
Krystian Matusiewicz4, Josef Pieprzyk5,6, Marcin Rogawski7,

Marian Srebrny1,2, and Marcin Wojcik8

Polish Academy of Sciences, Poland1; University of Commerce, Poland2; George Mason University, USA3;
Intel, Gdansk, Poland4; Queensland University of Technology, Australia5; Macquarie University, Australia6;

Cadence Design Systems, USA7; University of Bristol, United Kingdom8

DIAC 2014: Directions in Authenticated Ciphers

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 1 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

Co-authors

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 2 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

Outline

1 Introduction and Motivation

2 Icepole Design

3 Security Analysis

4 HW and SW Performance

5 Summary

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 3 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

Introduction and Motivation

Multiple Internet protocols require authenticated encryption:
IPSec/TLS/SSL etc.

High-speed hardware-oriented cipher with authentication,
more efficient that AES-GCM

Existing frameworks/strategies for provably secure
cryptographic schemes (e.g.: Sponge Construction etc.)

CAESAR competition

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 4 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

ICEPOLE 101

based on duplex framework introduced by Bertoni et al.
”Duplexing the sponge: (...)” Cryptology ePrint archive
2011/499

high-speed hardware-oriented ICEPOLE permutation is the
heart of our design

family of authenticated encryption schemes with three
parameters: key, nonce and SMN

primary recommendation: ICEPOLE-128: 128-bit key and
128-bit nonce

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 5 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

Encryption and Tag Generation - Overview

P

key || nonce

 co

pad

σSMN

pad

σAD

 cn

pad

σP
 T

Initialization

12
P6 P6 P6

Processing phase Tag generation

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 6 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

ICEPOLE Internal State Organization

1280-bit internal state S

organized into dwo-dimensional array S [4][5]

each element of array is a 64-bit word

S [x][y][z] refers to the bit z in the row x and the column y

the mapping between a vector V and the S :
V [64(x + 4y) + z] = S [x][y][z]

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 7 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

ICEPOLE Round and P6, P12 Permutations

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi), (psi),  (kappa).

R =  � � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

ICEPOLE Permutations

P6 - 6 rounds of ICEPOLE permutation

P12 - 12 rounds of ICEPOLE permutation

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 8 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

Transformation: µ
R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi), (psi),  (kappa).

R =  � � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

GF(25) multiplication modulo x5 + x2 + 1

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 9 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

ICEPOLE Round

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi), (psi),  (kappa).

R =  � � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 10 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

Transformation: ρ

0
 1

 2
 3

6
3 2

3
 4

 5
 6

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi), (psi),  (kappa).

R =  � � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the security of the keyed sponge construction. Sym-
metric Key Encryption Workshop (SKEW) (February 2011)

5. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based encryption, authentication and au-
thenticated encryption (July 2012)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponges, http://sponge.noekeon.org/
CSF-0.1.pdf

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function family main document, http:
//keccak.noekeon.org/Keccak-main-2.1.pdf

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the sponge: single-pass authenticated encryp-
tion and other applications. Cryptology ePrint Archive, Report 2011/499 (2011), http://eprint.iacr.org/

9. Biham, E., Shamir, A.: Di↵erential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology 4(1),
3–72 (1991)

10. Biryukov, A., Wagner, D.: Slide attacks. In: FSE. pp. 245–259 (1999)

11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information
Security and Cryptography, Springer (2002)

12. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol. Tech. rep., Network Working Group
(2008)

13. Dinur, I., Dunkelman, O., Shamir, A.: Collision attacks on up to 5 rounds of sha-3 using generalized internal
di↵erentials. Cryptology ePrint Archive, Report 2012/672 (2012), http://eprint.iacr.org/

14. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: EUROCRYPT. pp. 278–299
(2009)

15. Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned Rebound Attack - Application to Keccak. Cryptology ePrint
Archive, Report 2011/420 (2011)

16. Freier, A., Karlton, P., Kocher, P.: The Secure Sockets Layer (SSL) Protocol. Tech. rep., Internet Engineering
Task Force (IETF) (2011)

17. Gaj, K., Kaps, J.P., Amirineni, V., Rogawski, M., Homsirikamol, E., Brewster, B.Y.: ATHENa - Automated
Tool for Hardware EvaluatioN: Toward Fair and Comprehensive Benchmarking of Cryptographic Hardware
Using FPGAs. In: FPL. pp. 414–421 (2010)

18. Homsirikamol, E., Morawiecki, P., Rogawski, M., Srebrny, M.: Security margin evaluation of SHA-3 contest
finalists through SAT-based attacks. In: 11th Int. Conf. on Information Systems and Industrial Management.
LNCS, vol. 7564. Springer Berlin Heidelberg (2012)

19. Junod, P., Vaudenay, S.: Perfect di↵usion primitives for block ciphers. In: Selected Areas in Cryptography.
Lecture Notes in Computer Science, vol. 3357, pp. 84–99. Springer (2004)

20. Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Proceedings of the 17th international
conference on Fast software encryption. pp. 333–346. LNCS, Springer-Verlag (2010)

21. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of feal cipher. In: EUROCRYPT. pp.
81–91 (1992)

22. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-reduced Keccak. In: Fast Software
Encryption. LNCS, Springer (2013)

23. National Institute of Standards and Technology: Recommendations for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. NIST special publication 800-38D (November 2007)

24. Rivest, R., Agre, B., Bailey, D.V., Crutchfield, C., Dodis, Y., Fleming, K.E., Khan, A., Krishnamurthy, J.,
Lin, Y., Reyzin, L., Shen, E., Sukha, J., Sutherland, D., Tromer, E., Yin, Y.L.: The MD6 hash function,
http://groups.csail.mit.edu/cis/md6/

25. Soos, M.: CryptoMiniSat 2.5.0. In: SAT Race competitive event booklet (July 2010), http://www.msoos.
org/cryptominisat2

Appendix

A

The rotation o↵sets used in the ⇢ step are given below.

o↵sets[0][0] := 0 o↵sets[0][1] := 36 o↵sets[0][2] := 3 o↵sets[0][3] := 41
o↵sets[0][4] := 18 o↵sets[1][0] := 1 o↵sets[1][1] := 44 o↵sets[1][2] := 10
o↵sets[1][3] := 45 o↵sets[1][4] := 2 o↵sets[2][0] := 62 o↵sets[2][1] := 6
o↵sets[2][2] := 43 o↵sets[2][3] := 15 o↵sets[2][4] := 61 o↵sets[3][0] := 28
o↵sets[3][1] := 55 o↵sets[3][2] := 25 o↵sets[3][3] := 21 o↵sets[3][4] := 56

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 11 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

ICEPOLE Round

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi), (psi),  (kappa).

R =  � � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 12 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

Transformation: π

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi), (psi),  (kappa).

R =  � � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

π reorders the words in the state S

S [x
′
][y

′
]← π(S [x][y])

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 13 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

ICEPOLE Round

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi), (psi),  (kappa).

R =  � � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 14 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

Transformation ψ

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi), (psi),  (kappa).

R =  � � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

ICEPOLE S-box

The S-box maps a 5-bit input vector (M0, ... M4) to a 5-bit output
vector (Z0, ... Z4)

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 15 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

ICEPOLE Round

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi), (psi),  (kappa).

R =  � � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 16 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

Transformation: κ:

In  the 64-bit constant is xored with S[0][0].

S[0][0] := S[0][0] � constant[numberOfRound]

The constant value for each round is di↵erent. The values are given in Appendix B.

2.4 Initialization Phase

First, the state is initialized with the 1280-bit pseudorandom constant. The constant was ob-
tained by applying the Keccak-f[1600] permutation (an underlying permutation of the SHA-3
standard) to the all-zero vector and truncating the result to 1280 bits. (The constant is given in
Appendix C.)

Once the state is filled with the constant, the 128-bit key K and the 128-bit nonce are intro-
duced into the state. K0 and K1 denote two 64-bit words of the key, nonce0 and nonce1 denote
two 64-bit words of the nonce.

S[0][0] := S[0][0]�K0

S[1][0] := S[1][0]�K1

S[2][0] := S[2][0]� nonce0

S[3][0] := S[3][0]� nonce1

Then, the P12 permutation is run on the state S.

S := P12(S)

2.5 Processing Phase

The input data is processed in blocks. First, the associated data blocks �AD
i are processed and

next the plaintext blocks �P
i . The plaintext blocks are authenticated and encrypted whereas the

associated data blocks are only authenticated.
A block length has to be between 0 (the empty block) and 1024 bits. Each block is padded

to be 1026 bits long and the padding rules are as follows. First, every block is appended with
the frame bit. The frame bit is set to 1 for the last �AD block and all �P

i except the last one.
Otherwise the frame bit is set to 0. Once the frame bit is appended, a given block is padded
with a simple rule: append 1 and such a number of 0’s which gives 1026-bit block. Thus the
padded block has at least two padding bits (the frame bit and 1) and maximally 1026 padding
bits (in case of the empty block).

In the processing phase the ciphertext blocks ci are produced and the state is updated.

for all blocks �AD
i {

�AD
i := pad(�AD

i)
Sb1026c := Sb1026c � �AD

i

S := P6(S)
}

for all blocks �P
i {

ci = Sblc � �P
i (l is a length of �P

i)

�P
i := pad(�P

i)
Sb1026c := Sb1026c � �P

i

ICEPOLE Constants

The constant values are taken as the output of a simple 64-bit
maximum-cycle Linear Feedback Shift Register (LFSR).

The polynomial representation of LFSR is
x64 + x63 + x61 + x60 + 1.

The LFSR seed 0123456789ABCDEF

each cycle generates a subsequent constant.

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 17 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

Decryption and Tag Generation

P

key || nonce

 co

pad

σSMN

pad

σAD

 cn

pad

σP T

Initialization

12
P6 P6 P6

Processing phase Tag generation

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 18 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE Security

ICEPOLE Security (Parameters)

ICEPOLE is based on the duplex construction - parameters: r
(bitrate) and c (capacity)

ICEPOLE-128: r=1026 bits and c=256 bits (up to 2126

blocks)

ICEPOLE-256: r=962 bits and c=318 bits (up to 262 blocks)

Security level proven, unless permuation is unsecure

SKEW’11: Bertoni et al. in ”On the security of the keyed sponge
construction” proved that if the data complexity is limited to 2a r -bit
blocks, the keyed mode withstands generic attacks with time complexity
up to 2c−a calls of the underlying permutation. If a < c/2, this results in
an increase of the security strength from c/2 to c − a.

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 19 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE Security

Nonce Requirement

ICEPOLE requires a nonce

In case of nonce reuse, some level of intermediate robustness
provided by secret message number and associated data (if
distinct)

In case of violating all nonce-like mechanisms (nonce reused,
secret message number reused, the same associated data),
security claims do not hold (recent analysis by Tao Huang,
Hongjun Wu, Ivan Tjuawinata)

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 20 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE Security

ICEPOLE Security Analysis

Differential cryptanalysis (with aid of a SAT solver, we
provide a bound on differential trail probability — for 12
rounds, probability 6 2−84)
Linear cryptanalysis (good linear profile of s-box,
propagation of linear masks very similar to differential
analysis, expecting similar security margin. Rigorous analysis
to be done)
Rotational cryptanalysis (good selection of round constants
and pseudo-random initial state prevent this kind of attack)
SAT-based cryptanalysis (experimentally verified, the attack
reaches only 3 rounds)
Techniques exploiting low algebraic degree (algebraic
degree of a single round is 4, then for 4 rounds a degree is
256, making the attacks infeasible)

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 21 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

Hardware Architecture
Software Implementation

Basic Iterative Architecture
Fig. 3. A proof-of-concept single iterative round design for the hardware implementation of ICEPOLE

for a direct comparison. Both implementations use also the same interface and communication
protocol in order to reduce any discrepancies between the two designs. Similar to ICEPOLE,
AES-GCM contains the full padding unit and supports both encryption and decryption within
a single core.

Both cryptographic cores were described using VHDL language and verified against software
generated test vectors using ModelSim. The results were generated using ATHENa [17] using
two high-performance FPGA families from two major FPGA vendors, Xilinx and Altera. These
FPGA families are Xilinx Virtex 6 and Altera Stratix IV, respectively. No dedicated resources,
such as Block RAMs or DSP units, were used in either implementation. The comparison between
ICEPOLE-128 and AES-128-GCM using a basic iterative architecture is shown in Table 1. The
throughput shown in the table is based on the throughput of long messages.

Table 1. The comparison between ICEPOLE-128 and AES-128-GCM using an iterative architecture

Xilinx Virtex 6 Altera Stratix IV

ICEPOLE-128 AES-128-GCM ratio ICEPOLE-128 AES-128-GCM ratio

throughput (Gbit/s) 41.364 3.539 11.7 38.779 3.612 10.7

area (Slices/ALUT) 1501 940 1.6 4564 4025 1.13

throughput-to-area 27.56 3.76 7.3 8.5 0.9 9.4

With the exception of resource utilization, ICEPOLE-128 consistently outperforms AES-
128-GCM in terms of the throughput and the throughput-to-area ratio. For Xilinx Virtex 6,
with only 60% increases in area, ICEPOLE-128 achieves almost 12 times the speed of AES-
128-GCM, and seven times higher the throughput-to-area ratio. For Altera Stratix IV, due to
the unique behaviour of Altera Adaptive Look Up Tables (ALUTs), the resource utilization is
similar for both algorithms, with ICEPOLE-128 consuming only 13% more area. At the same
time, ICEPOLE-128 outperforms AES-128-GCM by a factor of 11 in terms of throughput and
a factor of 9 in terms of the throughput-to-area ratio.

5 Software Performance

While the primary focus of the ICEPOLE design is hardware performance, the cipher is also
amenable to e�cient software implementations. The three steps that require nontrivial imple-
mentations are µ, ⇢ and . They all can be easily implemented on platforms supporting 64-bit
XORs, logical ANDs and rotations. We measured that a rather straightforward C implemen-
tation compiled for speed (with no beyond-C optimization e↵orts like code vectorization using
AVX or intrinsics use) runs for very long messages at about 9 cycles per byte on Intel Ivy Bridge

Source:

Morawiecki et al. ”ICEPOLE: High-speed, Hardware-oriented
Authenticated Encryption” at CHES’14

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 22 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

Hardware Architecture
Software Implementation

FPGA Implementation Results

Xilinx Virtex-6

Throughput: 41364 Mbps

Area: 1501 Slices

Throughput/Area: 27.56 Mbps/Slice

Altera Stratix-IV

Throughput: 38779 Mbps

Area: 4564 ALUTs

Throughput/Area: 8.50 Mbps/ALUT

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 23 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

Hardware Architecture
Software Implementation

FPGA Implementation - Area

area

Page 1

AES-GCM 940 4025

2201 8294

1958 6765
ICEPOLE 1501 4564

Virtex 6 Stratix IV

Keccak

Keyak

AES-GCM Keccak Keyak ICEPOLE
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Virtex 6

Stratix IV
[V

ir
te

x
 6

:
s
lic

e
s
,

S
tr

a
ti
x
 I
V

:
A

L
U

T
s
]

Source:

Keyak and Keccak (multi-purpose mode) from anonymous
submission to anonymous conference :)
Thanks for sharing!

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 24 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

Hardware Architecture
Software Implementation

FPGA Implementation - Throughput

throughput

Page 2

AES-GCM 3.539 3.612

19.283 28.732

22.283 28.564
ICEPOLE 41.364 38.779

Virtex 6 Stratix IV

Keccak

Keyak

AES-GCM Keccak Keyak ICEPOLE
0

5

10

15

20

25

30

35

40

45
Virtex 6

Stratix IV

G
b

/s

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 25 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

Hardware Architecture
Software Implementation

FPGA Implementation - Throughput/Area

throughput_area

Page 3

AES-GCM 3.76 0.9

8.763 3.46

11.614 4.22
ICEPOLE 27.56 8.5

Virtex 6 Stratix IV

Keccak

Keyak

AES-GCM Keccak Keyak ICEPOLE
0

5

10

15

20

25

30

Virtex 6

Stratix IV

[V
ir
te

x
 6

:
M

b
p

s/
s
lic

e
,
S

tr
a

ti
x
 I
V

:
M

b
p

s
/A

L
U

T
]

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 26 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

Hardware Architecture
Software Implementation

Software Implementation

straightforward C implementation compiled for speed

no beyond-C optimization

9 cycles per byte on Intel Ivy Bridge (i5-3320M)

8 cycles per byte on Haswell (Intel Xeon E3 1275)

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 27 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

Conclusions
Questions

Conclusions

duplex construction + very efficient permutation = ICEPOLE

highly efficient in modern FPGAs

very-high speed in modern FPGAs

good software performance

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 28 / 29

Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

Conclusions
Questions

Questions

Questions?

Thank you!

Questions?

CERG: http:/cryptography.gmu.edu

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 29 / 29

