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Introduction and Motivation

Multiple Internet protocols require authenticated encryption:
IPSec/TLS/SSL etc.

High-speed hardware-oriented cipher with authentication,
more efficient that AES-GCM

Existing frameworks/strategies for provably secure
cryptographic schemes (e.g.: Sponge Construction etc.)

CAESAR competition
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ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

ICEPOLE 101

based on duplex framework introduced by Bertoni et al.
”Duplexing the sponge: (...)” Cryptology ePrint archive
2011/499

high-speed hardware-oriented ICEPOLE permutation is the
heart of our design

family of authenticated encryption schemes with three
parameters: key, nonce and SMN

primary recommendation: ICEPOLE-128: 128-bit key and
128-bit nonce
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Encryption and Tag Generation - Overview
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ICEPOLE Internal State Organization

1280-bit internal state S

organized into dwo-dimensional array S [4][5]

each element of array is a 64-bit word

S [x ][y ][z ] refers to the bit z in the row x and the column y

the mapping between a vector V and the S :
V [64(x + 4y) + z ] = S [x ][y ][z ]

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 7 / 29



Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE 101
Basic Ingredients of ICEPOLE
High Level View

ICEPOLE Round and P6, P12 Permutations

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi),  (psi),  (kappa).

R =  �  � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the  step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

ICEPOLE Permutations

P6 - 6 rounds of ICEPOLE permutation

P12 - 12 rounds of ICEPOLE permutation
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Transformation: µ
R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi),  (psi),  (kappa).

R =  �  � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the  step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

GF(25) multiplication modulo x5 + x2 + 1
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ICEPOLE Round

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi),  (psi),  (kappa).

R =  �  � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:
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The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the  step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)
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Transformation: ρ
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R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi),  (psi),  (kappa).

R =  �  � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the  step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)
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Appendix

A

The rotation o↵sets used in the ⇢ step are given below.

o↵sets[0][0] := 0 o↵sets[0][1] := 36 o↵sets[0][2] := 3 o↵sets[0][3] := 41
o↵sets[0][4] := 18 o↵sets[1][0] := 1 o↵sets[1][1] := 44 o↵sets[1][2] := 10
o↵sets[1][3] := 45 o↵sets[1][4] := 2 o↵sets[2][0] := 62 o↵sets[2][1] := 6
o↵sets[2][2] := 43 o↵sets[2][3] := 15 o↵sets[2][4] := 61 o↵sets[3][0] := 28
o↵sets[3][1] := 55 o↵sets[3][2] := 25 o↵sets[3][3] := 21 o↵sets[3][4] := 56
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ICEPOLE Round

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi),  (psi),  (kappa).

R =  �  � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the  step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)
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Transformation: π

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi),  (psi),  (kappa).

R =  �  � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
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Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the  step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

π reorders the words in the state S

S [x
′
][y

′
]← π(S [x ][y ])
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R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi),  (psi),  (kappa).

R =  �  � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
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The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the  step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)
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Transformation ψ

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi),  (psi),  (kappa).

R =  �  � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the  step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)

ICEPOLE S-box

The S-box maps a 5-bit input vector (M0, ... M4) to a 5-bit output
vector (Z0, ... Z4)
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ICEPOLE Round

R consists of five steps labelled by the Greek letters: µ (mu), ⇢ (rho), ⇡ (pi),  (psi),  (kappa).

R =  �  � ⇡ � ⇢ � µ

Each step updates the state as follows.

µ:

In the µ step bits are mixed through the MDS (Maximum Distance Separable) matrix. Every
20-bit slice is mixed through the matrix given below. Formally, a column vector (Z0, Z1, Z2, Z3)
is multiplied by a constant matrix producing a vector of four 5-bit words.

0
BB@

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

1
CCA

0
BB@

Z0

Z1

Z2

Z3

1
CCA =

0
BB@

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

1
CCA

The operations are done in GF (25). Here the multiplication is defined as the multiplication of
binary polynomials modulo the irreducible polynomial x5 +x2 +1. There are only three distinct
terms in the chosen matrix, namely 18, 2, 1 and they correspond to the polynomials x4 + x,
x, and 1, respectively. The µ step can be e�ciently implemented with simple bitwise equations
(see Appendix H).

⇢:

The ⇢ step is the bitwise rotation applied to each of the twenty 64-bit words of the state. The
bitwise rotation moves bit at position z into position (z+rvalue) modulo 64. For each word rvalue

is di↵erent.

S[x][y] := S[x][y] n o↵sets[x][y] for all (0  x  3), (0  y  4)

The rotation o↵sets are given in Appendix A.

⇡:

⇡ reorders the words in the state. Words are moved from S[x][y] to S[x0][y0] and the new coor-
dinates (x0, y0) are calculated from the following simple formula.

x0 := (x + y) mod 4
y0 := (((x + y) mod 4) + y + 1) mod 5

 :

In the  step the ICEPOLE S-box is applied to each of 256 rows of the state. The S-box maps
a 5-bit input vector (M0, M1, ..., M4) to a 5-bit output vector (Z0, Z1, ..., Z4). The S-box func-
tionality can be easily described by the following bitwise equation. Operations on the index k
are done modulo 5. The bitwise AND operator · is omitted for clarity.

for all (0  k  4)
Zk = Mk � (¬Mk+1Mk+2)� (M0M1M2M3M4)� (¬M0¬M1¬M2¬M3¬M4)
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Transformation: κ:

In  the 64-bit constant is xored with S[0][0].

S[0][0] := S[0][0] � constant[numberOfRound]

The constant value for each round is di↵erent. The values are given in Appendix B.

2.4 Initialization Phase

First, the state is initialized with the 1280-bit pseudorandom constant. The constant was ob-
tained by applying the Keccak-f[1600] permutation (an underlying permutation of the SHA-3
standard) to the all-zero vector and truncating the result to 1280 bits. (The constant is given in
Appendix C.)

Once the state is filled with the constant, the 128-bit key K and the 128-bit nonce are intro-
duced into the state. K0 and K1 denote two 64-bit words of the key, nonce0 and nonce1 denote
two 64-bit words of the nonce.

S[0][0] := S[0][0]�K0

S[1][0] := S[1][0]�K1

S[2][0] := S[2][0]� nonce0

S[3][0] := S[3][0]� nonce1

Then, the P12 permutation is run on the state S.

S := P12(S)

2.5 Processing Phase

The input data is processed in blocks. First, the associated data blocks �AD
i are processed and

next the plaintext blocks �P
i . The plaintext blocks are authenticated and encrypted whereas the

associated data blocks are only authenticated.
A block length has to be between 0 (the empty block) and 1024 bits. Each block is padded

to be 1026 bits long and the padding rules are as follows. First, every block is appended with
the frame bit. The frame bit is set to 1 for the last �AD block and all �P

i except the last one.
Otherwise the frame bit is set to 0. Once the frame bit is appended, a given block is padded
with a simple rule: append 1 and such a number of 0’s which gives 1026-bit block. Thus the
padded block has at least two padding bits (the frame bit and 1) and maximally 1026 padding
bits (in case of the empty block).

In the processing phase the ciphertext blocks ci are produced and the state is updated.

for all blocks �AD
i {

�AD
i := pad(�AD

i )
Sb1026c := Sb1026c � �AD

i

S := P6(S)
}

for all blocks �P
i {

ci = Sblc � �P
i (l is a length of �P

i )

�P
i := pad(�P

i )
Sb1026c := Sb1026c � �P

i

ICEPOLE Constants

The constant values are taken as the output of a simple 64-bit
maximum-cycle Linear Feedback Shift Register (LFSR).

The polynomial representation of LFSR is
x64 + x63 + x61 + x60 + 1.

The LFSR seed 0123456789ABCDEF

each cycle generates a subsequent constant.
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Decryption and Tag Generation

P

key || nonce

             co

pad

σSMN

pad

σAD

             cn

pad

σP   T

Initialization

12
P6 P6 P6

Processing phase Tag generation
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ICEPOLE Security (Parameters)

ICEPOLE is based on the duplex construction - parameters: r
(bitrate) and c (capacity)

ICEPOLE-128: r=1026 bits and c=256 bits (up to 2126

blocks)

ICEPOLE-256: r=962 bits and c=318 bits (up to 262 blocks)

Security level proven, unless permuation is unsecure

SKEW’11: Bertoni et al. in ”On the security of the keyed sponge
construction” proved that if the data complexity is limited to 2a r -bit
blocks, the keyed mode withstands generic attacks with time complexity
up to 2c−a calls of the underlying permutation. If a < c/2, this results in
an increase of the security strength from c/2 to c − a.

DIAC, August 23-24, 2014 Marcin Rogawski CAESAR candidate ICEPOLE 19 / 29



Introduction and Motivation
Icepole Design

Security Analysis
HW and SW Performance

Summary

ICEPOLE Security

Nonce Requirement

ICEPOLE requires a nonce

In case of nonce reuse, some level of intermediate robustness
provided by secret message number and associated data (if
distinct)

In case of violating all nonce-like mechanisms (nonce reused,
secret message number reused, the same associated data),
security claims do not hold (recent analysis by Tao Huang,
Hongjun Wu, Ivan Tjuawinata)
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ICEPOLE Security Analysis

Differential cryptanalysis (with aid of a SAT solver, we
provide a bound on differential trail probability — for 12
rounds, probability 6 2−84)
Linear cryptanalysis (good linear profile of s-box,
propagation of linear masks very similar to differential
analysis, expecting similar security margin. Rigorous analysis
to be done)
Rotational cryptanalysis (good selection of round constants
and pseudo-random initial state prevent this kind of attack)
SAT-based cryptanalysis (experimentally verified, the attack
reaches only 3 rounds)
Techniques exploiting low algebraic degree (algebraic
degree of a single round is 4, then for 4 rounds a degree is
256, making the attacks infeasible)
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Basic Iterative Architecture
Fig. 3. A proof-of-concept single iterative round design for the hardware implementation of ICEPOLE

for a direct comparison. Both implementations use also the same interface and communication
protocol in order to reduce any discrepancies between the two designs. Similar to ICEPOLE,
AES-GCM contains the full padding unit and supports both encryption and decryption within
a single core.

Both cryptographic cores were described using VHDL language and verified against software
generated test vectors using ModelSim. The results were generated using ATHENa [17] using
two high-performance FPGA families from two major FPGA vendors, Xilinx and Altera. These
FPGA families are Xilinx Virtex 6 and Altera Stratix IV, respectively. No dedicated resources,
such as Block RAMs or DSP units, were used in either implementation. The comparison between
ICEPOLE-128 and AES-128-GCM using a basic iterative architecture is shown in Table 1. The
throughput shown in the table is based on the throughput of long messages.

Table 1. The comparison between ICEPOLE-128 and AES-128-GCM using an iterative architecture

Xilinx Virtex 6 Altera Stratix IV

ICEPOLE-128 AES-128-GCM ratio ICEPOLE-128 AES-128-GCM ratio

throughput (Gbit/s) 41.364 3.539 11.7 38.779 3.612 10.7

area (Slices/ALUT) 1501 940 1.6 4564 4025 1.13

throughput-to-area 27.56 3.76 7.3 8.5 0.9 9.4

With the exception of resource utilization, ICEPOLE-128 consistently outperforms AES-
128-GCM in terms of the throughput and the throughput-to-area ratio. For Xilinx Virtex 6,
with only 60% increases in area, ICEPOLE-128 achieves almost 12 times the speed of AES-
128-GCM, and seven times higher the throughput-to-area ratio. For Altera Stratix IV, due to
the unique behaviour of Altera Adaptive Look Up Tables (ALUTs), the resource utilization is
similar for both algorithms, with ICEPOLE-128 consuming only 13% more area. At the same
time, ICEPOLE-128 outperforms AES-128-GCM by a factor of 11 in terms of throughput and
a factor of 9 in terms of the throughput-to-area ratio.

5 Software Performance

While the primary focus of the ICEPOLE design is hardware performance, the cipher is also
amenable to e�cient software implementations. The three steps that require nontrivial imple-
mentations are µ, ⇢ and  . They all can be easily implemented on platforms supporting 64-bit
XORs, logical ANDs and rotations. We measured that a rather straightforward C implemen-
tation compiled for speed (with no beyond-C optimization e↵orts like code vectorization using
AVX or intrinsics use) runs for very long messages at about 9 cycles per byte on Intel Ivy Bridge

Source:

Morawiecki et al. ”ICEPOLE: High-speed, Hardware-oriented
Authenticated Encryption” at CHES’14
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FPGA Implementation Results

Xilinx Virtex-6

Throughput: 41364 Mbps

Area: 1501 Slices

Throughput/Area: 27.56 Mbps/Slice

Altera Stratix-IV

Throughput: 38779 Mbps

Area: 4564 ALUTs

Throughput/Area: 8.50 Mbps/ALUT
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FPGA Implementation - Area

area

Page 1

AES-GCM 940 4025

2201 8294

1958 6765
ICEPOLE 1501 4564
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Source:

Keyak and Keccak (multi-purpose mode) from anonymous
submission to anonymous conference :)
Thanks for sharing!
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FPGA Implementation - Throughput

throughput

Page 2

AES-GCM 3.539 3.612
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22.283 28.564
ICEPOLE 41.364 38.779
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FPGA Implementation - Throughput/Area

throughput_area

Page 3

AES-GCM 3.76 0.9

8.763 3.46

11.614 4.22
ICEPOLE 27.56 8.5
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Software Implementation

straightforward C implementation compiled for speed

no beyond-C optimization

9 cycles per byte on Intel Ivy Bridge (i5-3320M)

8 cycles per byte on Haswell (Intel Xeon E3 1275)
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Conclusions

duplex construction + very efficient permutation = ICEPOLE

highly efficient in modern FPGAs

very-high speed in modern FPGAs

good software performance
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Questions?

Thank you!

Questions?

CERG:      http:/cryptography.gmu.edu 
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